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Fig. 1: Our proposed dual-arm robotic system demonstrates adaptive manipulation and assembly
capabilities for diverse multi-part objects. The system combines offline task-oriented planning and
optimization to address sequencing, grasping, and motion planning for long-horizon assembly tasks.
For robust online control, it utilizes guidance from the offline plan to learn assembly skills that
generalize effectively across diverse object geometries, assembly paths, and grasp poses.

Abstract: Multi-part assembly poses significant challenges for robots to execute
long-horizon, contact-rich manipulation with generalization across complex ge-
ometries. We present Fabrica, a dual-arm robotic system capable of end-to-end
planning and control for autonomous assembly of general multi-part objects. For
planning over long horizons, we develop hierarchies of precedence, sequence,
grasp, and motion planning with automated fixture generation, enabling gen-
eral multi-step assembly on any dual-arm robots. The planner is made efficient
through a parallelizable design and is optimized for downstream control stability.
For contact-rich assembly steps, we propose a lightweight reinforcement learning
framework that trains generalist policies across object geometries, assembly di-
rections, and grasp poses, guided by equivariance and residual actions obtained
from the plan. These policies transfer zero-shot to the real world and achieve
80% successful steps. For systematic evaluation, we propose a benchmark suite
of multi-part assemblies resembling industrial and daily objects across diverse cat-
egories and geometries. By integrating efficient global planning and robust local
control, we showcase the first system to achieve complete and generalizable real-
world multi-part assembly without domain knowledge or human demonstrations.
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1 Introduction

Multi-part assemblies are prevalent in home and industrial settings. Robotic assembly of multi-
part objects presents a longstanding challenge: long-term planning to map CAD models to robot
programs and robust control skills to achieve high precision and adaptivity during contact-rich inter-
actions. However, most assembly robots today are programmed manually with specially designed
infrastructures, and the program is executed repetitively using a stiff controller. As a result, they
take substantial time to adapt to new production demands and are highly sensitive to uncertainties.

Despite recent progress in sim-to-real transfer of contact-rich part insertion skills [1, 2, 3], current
robotic systems are still not capable of assembling general multi-part objects. Prior research has
primarily focused on two-part, top-down insertion using a single robot arm, but multi-part assem-
bly requires diverse insertion and grasping poses and a bi-manual operation that frequently changes
which part to hold to counter-balance the insertion force from the other hand. This presents new
challenges to planning and control. First, jointly finding an assembly-hold sequence, physically
stable grasps, and collision-free robot motion presents a hybrid (discrete-continuous) optimization
problem in a large search space. Second, control policies for part insertion must be robust to mis-
alignment and uncertainty, while being able to generalize across a wide range of part geometries.

We tackle these challenges by building a general planning and control system for flexible, dual-arm
assembly of multi-part objects, with zero-shot sim-to-real transfer. Our contributions include:

Algorithms: We propose a hierarchical dual-arm planner to plan and optimize the assembly-hold se-
quence, grasps, and robot motion. For contact-rich steps, we learn generalist reinforcement learning
(RL) policies utilizing equivariant representations guided by planned motion to achieve robustness.

Systems: We build a real-world system that can map a CAD assembly model to robot execution that
alternates between tracking planned motions and reactive control policies. To our knowledge, this
is the first system that autonomously achieves all phases of a multi-part assembly problem: from
automatic pickup fixture design, to sequence, grasps, and motion planning, to insertion. Our system
is tested on commonly used robotics hardware and can be generalized to different dual-arm robots.

Benchmarks: We design a benchmark suite of 7 multi-part assemblies ranging from 5 to 9 parts,
and our system can assemble them robustly in both simulation and real-world system.

2 Related Work

Prior work on multi-part assembly is heavily focused on planning assembly sequences and paths,
including geometric reasoning [4], sampling-based motion planners [5, 6, 7], and RL for combina-
torial sequence search [8, 9]. Recently, physics-based motion planning [10] has shown success in
assembling many complex parts with tight clearances. In addition, realistic kinematic and dynamic
constraints have been considered in sequence planning for real-world robot setups [11, 12, 13]. How-
ever, planning alone struggles with execution uncertainties, and stability- or efficiency-optimal plans
remain underexplored. While robust and efficient robotic systems have been built for tasks like as-
sembling IKEA chairs [14], LEGO blocks [15], and structural elements [16, 17, 18, 19, 20, 21, 22],
these are domain-specific and lack generalizability. In contrast, our planner generalizes across di-
verse multi-part assemblies, employs hierarchical structure and parallelization for efficiency, and
explicitly optimizes stability to enhance downstream control robustness.

Even with given assembly plans, executing contact-rich assembly remains challenging due to tight
clearances, system uncertainties, and the need for generalization. RL has shown promise in ad-
dressing these issues, combining motion planning with policy learning from CAD models or su-
pervised trajectories [23, 24], and leveraging accurate simulations for motion generation and policy
training [11, 25]. Sim-to-real transfer [26, 3, 27, 2] and real-world RL [28] have enabled high-
precision insertion, while some efforts [29] explore multi-step tasks. However, they all primarily
work under simplified settings like top-down insertions and fixed grasps, which are insufficient for
multi-part assembly where side-way insertions or tilted grasps are necessary. Imitation learning ap-
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proaches [30, 31] support complex multi-step skill learning but lack robustness and generality. While
spatial-equivariant techniques have improved generalization in other domains [32, 33, 34, 35, 36],
they remain underexplored for assembly. Notably, Seo et al. [37] learn an SE(3)-equivariant gain
scheduling policy, but without varying grasps or geometries. Existing benchmarks focus on narrow
tasks [38, 39, 40, 41, 42], limiting the evaluation of generalization. In contrast, we demonstrate
that combining planning with equivariant generalist policies, for the first time, enables multi-part
assembly over diverse geometries, paths, and grasps without any human demonstration.

3 Planning Multi-Step Dual-Arm Assembly
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Figure 2: System overview. Fabrica takes part meshes and hardware configurations as inputs. It
plans sequences, grasps, fixture designs, and motions through a multi-stage planner, and learns RL
policies for all insertion steps, which are deployed together on real robots to complete the assembly.

Given a n-part assembly with parts indexed by o ∈ O, we compute a plan to manipulate all parts
from the initial poses p0O to the goal poses pGO ∈ SE(3) under all physical constraints. We focus
on sequential, collaborative manipulation that alternates between robot Ra assembling a part and
another robot Rh holding a part to stabilize the sub-assembly. Then, we train control policies for
precise contact-rich assembly steps. Finally, our system execution alternates between open-loop
planned motions and closed-loop reactive policies. Fig. 2 provides an overview of the system.

We formulate planning as optimizing assembly-hold sequences ϕ, grasps σ, and robot motions π:

min
ϕ,σ,π

E
(
Φn

i=1f⃗(ϕ1:i, σi−1:i, πi)
)

s.t. Cprec(ϕ) ≤ 0, Ckin(ϕ, σ, π) = 0, Ccol(ϕ, σ, π) ≤ 0 (1)

The sequence ϕ = [oa,1, oh,2, oa,2, · · · , oh,n, oa,n] is an ordering of parts to be held (h) and
assembled (a), with σ = [ga,1, gh,2, ga,2, · · · , gh,n, ga,n] including grasp g ∈ SE(3) for each
step. The robot motion π is divided based on the mode families [43, 44] and skills: π =
[τfa,1, τ

g
a,1, τ

a
a,1︸ ︷︷ ︸

π[a,1]

, τfh,2︸︷︷︸
π[h,2]

, τfa,2, τ
g
a,2, τ

a
a,2︸ ︷︷ ︸

π[a,2]

, · · · ] where each assembly task π[a, i] for Ra contains (1) a

transit motion τfa,i with its hand free, (2) a transfer motion τga,i grasping an object, and (3) an as-
sembly motion τaa,i for part insertion. A hold task π[h, i] only involves a hold transfer motion τfh,i.

The cost function composes step-wise objective vectors f⃗ that evaluate the quality of each step,
Φ : R|f⃗ |×n → R|f⃗ | aggregates objectives across steps (e.g., sum or max), and E maps the result
to a scalar (e.g., weighted sum). Cprec, Ckin, Ccol represent part precedence, kinematic, and collision
constraints respectively. Please refer to App. B for detailed constraint formulation.

Solving for feasible or even optimal solutions in a joint manner is intractable. We present a hierar-
chical approach to decompose it into simpler subproblems for efficient computation with optimality
guarantees under assumptions (A1)-(A5). The complete pesudocode can be found in App. C.
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3.1 Part Precedence Planning
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To evaluate constraint Cprec, we propose an algorithm to
determine the complete precedence relationships for as-
sembling all parts O. First, we define precedence tier as
a group of parts that can be removed independently of
one another. Tiers are ordered so that parts in earlier tiers
must be disassembled before those in later ones. To iter-
atively construct all tiers, we use a physics-based motion
planner [10] to find all parts that can be disassembled without interfering with the rest, which are
grouped into the current tier. We then remove these parts and repeat the process on the remaining
assembly until each part is assigned to a tier. Next, we build a precedence graph Gprec that encodes
the minimal set of ordering constraints that any collision-free assembly sequence must follow. Each
node in Gprec is a part, and a directed edge oi → oj means that oi must be assembled before oj be-
cause oj blocks the (dis)assembly path τoi planned during tier generation. For each part o, we define
its precedence set Oprec[o] = {o′|(o′ → o) ∈ Gprec} as all parts that must be assembled before it.

3.2 Dual-Arm Grasp Filtering
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We aim to identify valid grasp pairs Ga×h[oa, oh] for each
assembly-hold part pair (oa, oh) which support insertion
and holding without colliding with preceding parts of oa
and oh. Since searching the full 6-DoF space is infeasible,
we assume feasible grasps exist in a dense, finite set of
grasps, see (A5). Because each grasp must be checked for
collisions with the current subassembly ψ1:i, doing this
online results in repeated and expensive checks against
many part combinations. To speed up, we precompute
valid grasps offline by sampling grasp candidates and per-
forming parallelized inverse kinematics (IK) and collision
checks for both arms. In practice, we simulate the robot
following the part’s disassembly path τo and reject it if
the motion collides with the precedence set Oprec[o]. All
collisions and motions are recorded for reuse in later stages. Similarly, we check if a grasp can
securely hold a part while disassembling other parts without collision. Finally, for each part pair
(oa, oh), we filter feasible grasps (ga, gh) by checking interarm collisions under computed IK.

3.3 Dual-Arm Sequence-Grasp Optimization
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With all valid grasps computed, we now solve for the
optimal sequence ϕ∗ and grasps σ∗ in Eq. 2. We for-
mulate this as a state-space search problem and con-
struct a directed state tree TG, where each node repre-
sents a partial assembly state s = (t, Or, o, g) consisting
of robot task t (assemble or hold), assembled parts Or,
part being grasped o, and grasp pose g. Starting from
root nodes (complete assembly), we recursively expand
the tree by alternating between assembling and holding,
pruning states that violate constraints. Valid transitions
must also respect precomputed grasp feasibility between successive steps. All collision and motion
feasibility checks are reused from the earlier filtering stage. Each transition is scored by a grasp
stability vector f⃗ , capturing objectives such as supportiveness of the held part, frequency of grasp
switches, torque stability, and contact area, which are designed to be lightweight yet effective for
downstream control. We apply dynamic programming (DP) to propagate the best cumulative scores
through the tree and identify the optimal solution. Please find more details in App. C.3.
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3.4 Grasp-Aware Pickup Fixture Generation

For precise pickup, we develop a software-hardware co-design approach to automatically generate a
fixture that stabilizes and orients each part for top-down pickup, based on planned grasps in Sec. 3.3.
This removes the need for reorientation or regrasping between pickup and assembly, allowing the
system to focus on the core assembly challenges. We first determine each part’s pickup pose in
the world frame, with its orientation defined by the rotation from the assembly grasp to a top-down
grasp. We then compute pickup positions by packing parts on the XY plane to avoid collisions
between parts and the gripper. To reduce material usage and workspace area, we model this as a bin-
packing problem and solve it with an iterative algorithm that alternates between packing, collision
checking, and resolution. Finally, we generate the fixture by creating mold cavities based on the part
geometries and poses, ensuring stable placement. See details in App. C.4 and examples in Fig. 3.

Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool

Figure 3: Top: benchmark assemblies. Bottom: the auto-generated pickup fixtures in Sec. 3.4.

3.5 Motion Planning for Transit and Transfer

Finally, RRT-Connect [45] plans for all remaining transit and transfer motions, i.e., τfa,i, τ
g
a,i, τ

f
h,i,

which can be parallelized since all start and goal states of motions are provided from earlier stages.

4 Learning General Single-Step Assembly Policy

Once the full assembly plan is computed, the next challenge is to track it reliably in the real world.
We use a hybrid controller that alternates between tracking the pre-planned transit and transfer mo-
tions, and an RL-based reactive controller for contact-rich assembly steps. The controller must
generalize across variations in object geometry, grasp poses, and assembly directions. To this end,
we design a lightweight yet highly effective RL framework for training a generalist assembly policy.
Given a pre-planned insertion path τo, our goal is to guide the part from its noisy initial pose τ̂o[0] to
the goal pose τ̂o[1], accounting for uncertainty in grasp and mating part geometry. We frame this as a
Markov decision process (MDP) and learn a policy π : O → P(A) that maximizes expected rewards
over time Eπ[

∑T−1
t=0 γtr(st)]. We use proximal policy optimization (PPO) [46] to train a stochastic

policy in simulation, which is then transferred to the real world without additional fine-tuning.

4.1 Path-Centric Coordinate Transformation

Humans naturally reuse the same assembly skills across different objects, regardless of their poses
or motions. We emulate this ability by designing a problem space transformation [47] with SE(3)-
equivariance, which maps all straight-line assembly motions in the world frame into equivalent
top-down insertions in the task frame, allowing the RL agent to perceive them in a unified way.

Formally speaking, given an assembly path τ with a pre-assembly position pd and the assembled
position pa, we define a path-centric transformation T conditioned on τ such that T(pd) = (0, 0, 0)
and T(pd) −T(pa) = (0, 0, ∥pd − pa∥). Thus, the agent’s observation is the transformed position
of the part being assembled (under unknown noise), and its action is the transformed delta position,
i.e., the ideal position change in the path-centric frame. Thanks to equivariance, the agent only
needs to learn top-down insertions and can omit orientation from both observations and actions,
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simplifying the learning setup. We use a task-space impedance (TSI) controller to enable smooth
and compliant insertions, with impedance gains similarly transformed into the path-centric frame
to maintain consistent behavior across different assembly directions. This design ensures that the
observation and action spaces are minimal yet essential, facilitating generalizability among different
assembly tasks, and is transferable to different robot arms and end effectors.

4.2 Plan-Guided Residual Action

We find that guidance from the planned open-loop action helps learning by injecting prior knowledge
about the coarse assembly direction. Thus, we adopt the idea of residual action [48, 31] in RL, where
the policy outputs only the corrective action on top of the open-loop action, allowing the policy to
focus on refining the assembly rather than learning the full assembly behavior. In practice, residual
action warm-starts policy learning and typically leads to faster and better convergence.

4.3 Minimalist Reward Design and Sim-to-Real Transfer

Surprisingly, our insertion reward is simply the negative L2 distance from the current part position
to the goal position. This form is dense and sufficient enough for learning effective local insertion
policies as our initial state is the pre-assembled pose given by the planner, which is already in the
proximity of the goal thus does not require expensive exploration or complex reward engineering.

Due to the sim-to-real gap from misaligned dynamics, we adopt 1) domain randomization with 3mm-
noised initialization on object pose during training and 2) Policy-Level Action Integrator (PLAI) [26]
during deployment to ease the sim-to-real transfer of RL policies, which improves action consistency
by incrementally applying policy outputs to the last desired state instead of the current state. PLAI
applies policy actions as sdt+1 = sdt ⊕ Π(ot), where sdt represents the desired state at time t, Π(ot)
is the policy action computed based on the current observation ot, and ⊕ denotes the composition
operation, instead of the nominal approach sdt+1 = st⊕Π(ot) which is prone to error accumulation.

5 Experiments

5.1 Benchmark Suite and Experimental Setup

We develop a diverse benchmark suite spanning furniture, toys, and industrial equipment, which in-
cludes beam (5 parts), plumber block (5 parts), car (6 parts), gamepad (6 parts), cooling manifold
(7 parts), duct (8 parts), and stool (9 parts). These assemblies cover various geometries and con-
nection types found in real-world applications, with both top-down and sideway insertions, and are
feasible for dual-arm robots with parallel grippers. For planning in simulation, we demonstrate on
several different robots, including Franka Emika Panda, UFactory xArm7, and UR5e with different
grippers. We use Panda for systematic evaluations of policy training and real-world execution. See
more details on the experimental setup and hyper-parameters in App. D.

5.2 Planning Multi-Step Assembly in Simulation

Efficiency: Table 1 shows the breakdown of planning time by stages for different assemblies. Our
overall speed is on the order of minutes to solve for optimal plans given efficient parallelization.

Optimality: Table 2 shows the objective scores of optimized sequences surpassing the random ones
by a large margin with priorities from f1 to f4 (see App. C.3 for details on the score definitions).

Generality: Please see App. A for visual demonstrations of planning with different robot arms
(Panda, xArm7, UR5e) and grippers. Our planning framework is general to any given hardware.

5.3 Learning Single-Step Assembly in Simulation

We use Isaac Gym [49] for training RL policies and performing simulation evaluations, with the PPO
code from RL Games [50]. Table 3 presents the average % of successful steps for assembling our
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Table 1: Planning runtime breakdown of each
assembly. Stages marked with * are paral-
lelized, while others have yet to be parallelized.

Assembly Runtime (s)
Prec∗ Grasp∗ Seq Fixture Motion Total

Beam 19.7 35.7 0.2 1.7 115.9 173.2
Plumber 21.6 31.8 12.6 0.9 118.9 185.7

Car 23.4 52.9 0.9 1.9 127.4 206.4
Gamepad 22.2 37.2 4.5 3.6 117.4 184.8
Manifold 20.9 162.7 5.2 1.9 149.6 340.4

Duct 93.9 102.3 208.1 2.5 185.9 592.7
Stool 57.2 109.1 8.0 4.0 324.5 502.7

Table 2: Objective comparisons between opti-
mal and random sequences. Higher is better for
f1, f4; lower is better for f2, f3.

Assembly Objective Values (Optimal / Random)
f1 ↑ f2 ↓ f3 ↓ f4 ↑

Beam 4.00 / 0.88 4.00 / 0.88 0.48 / 0.39 119.8 / 6.8
Plumber 4.00 / 1.27 2.00 / 1.79 0.18 / 0.33 293.0 / 93.4

Car 4.00 / 1.72 1.00 / 1.64 0.21 / 0.94 140.6 / 35.2
Gamepad 5.00 / 1.76 1.00 / 1.56 1.40 / 0.63 428.6 / 52.1
Manifold 6.00 / 2.62 1.00 / 2.17 0.18 / 0.69 12.5 / 18.7

Duct 6.00 / 3.00 1.00 / 2.88 0.09 / 0.39 536.0 / 101.3
Stool 8.00 / 3.43 6.00 / 3.24 0.03 / 0.54 322.2 / 87.9

Table 3: % of successful steps without intervention in simulation evaluations.

Method % of Successful Steps without Intervention (Simulation)
Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool

Open-Loop Tracking 21.48 24.22 2.34 2.34 3.91 18.75 0.00
Part Specialist Policy (PS) 98.63 84.08 90.82 87.60 94.63 100.00 78.91

Assembly Specialist Policy (AS) 99.12 97.46 70.12 88.87 95.02 96.58 76.66
Assembly Generalist Policy (AG) 98.83 81.64 60.55 71.48 89.06 89.84 58.59

benchmark assemblies in simulation across 1024 random trials using different methods: 1) Open-
Loop Tracking: A baseline that strictly follows the pre-planned path without feedback correction.
2) Part Specialist Policy (PS): Policies trained on individual pairs of parts. 3) Assembly Specialist
Policy (AS): Policies trained on all parts within a single assembly. 4) Assembly Generalist Policy
(AG): Policies trained on all parts from all assemblies in our suite, aiming for broad generalization.

The results show that open-loop tracking exhibits the lowest success rates across all assemblies,
indicating its limitations in handling uncertainties and variations. The AS policy demonstrates com-
petitive performance as the PS policy, suggesting that a shared policy across different parts in an
assembly can generalize well. It may sacrifice some part-specific optimization, but can transfer the
knowledge between similar parts. The AG policy, while slightly less effective than the other RL
counterparts, still demonstrates robust performance, suggesting that learning a single shared policy
across different assemblies is promising, given the equivariant representations. Furthermore, the
success rates vary across different assemblies, with simpler assemblies like the Beam and Cooling
Manifold achieving higher performance across all methods, while more complex assemblies such as
the Gamepad and Stool exhibit lower success rates due to their intricate geometries and constraints.

5.4 Executing Multi-Step Assembly in Real World

Table 4 shows the % of successful steps on benchmark assemblies evaluated in the real world (step-
wise statistics), and Table 5 shows the multi-step cumulative success rates with 0/1/2 total interven-
tions for failure recovery (overall statistics). All numbers are averaged across three complete multi-
step real experiments, which translate to thousands of total assembly steps. We deploy stochastic
policies with state-based success detection and allow up to three trials per step until success. For
qualitative results on real-world multi-step executions, please refer to Fig. 1 and App. A.

Ours: We use both AS and AG policies for real-world comparisons. For AG, we perform out-of-
distribution (OOD) evaluations by training 7 generalist policies, where each one is trained on the
other 6 benchmark assemblies (excluding the test assembly). Remarkably, these OOD generalist
policies still achieved comparable performance to specialist policies trained directly on the test as-
sembly, which indicates that through our approach, insertion strategies learned from a diverse set of
assemblies can effectively transfer to novel, unseen assemblies.

Baseline: Since Fabrica is the first to assemble general multi-part objects with only CAD input,
identifying a comparable SOTA baseline is challenging. The closest work is ASAP [11], which per-
forms single-arm kinematic feasibility search without sequence/grasp optimization or closed-loop
control. To compare, we adapted it by planning with dual-arm and adding our RL policy. With-
out optimized part sequencing and grasping, ASAP performed substantially worse, often struggling
even with two interventions, which emphasizes the contributions of our planning optimizations.
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Table 4: % of successful steps without intervention in real-world evaluations.

Method % of Successful Steps without Intervention (Real World)
Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool Overall

Ours AS 75 83 80 87 72 71 92 80
AG (OOD) 67 75 93 80 72 81 92 80

Baseline ASAP (Adapted) 50 42 67 33 55 52 75 55
Open-Loop Tracking 42 25 20 20 17 14 21 23

Ablation
w/o Part Seq Optim 75 75 73 40 61 71 92 71
w/o Grasp Optim 42 83 47 60 67 67 75 64

w/o Path-Centric Transform 67 67 20 53 78 38 92 61

Table 5: Multi-step cumulative success rate with 0/1/2 interventions in real-world evaluations.

Method Multi-Step Cumulative Success Rate with 0/1/2 Interventions (%) (Real World)
Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool Overall

Ours AS 0/100/100 33/100/100 0/100/100 33/100/100 0/ 67/ 67 0/ 0/100 33/100/100 15/ 81/ 95
AG (OOD) 0/ 67/100 0/100/100 67/100/100 0/100/100 0/ 33/100 0/ 67/100 33/100/100 10/ 81/100

Baseline ASAP (Adapted) 0/ 0/100 0/ 0/ 67 0/ 33/100 0/ 0/ 0 0/ 0/ 33 0/ 0/ 0 0/ 0/100 0/ 5/ 57
Open-Loop Tracking 0/ 0/ 67 0/ 0/ 33 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 14

Ablation
w/o Part Seq Optim 0/100/100 33/ 67/100 0/ 67/100 0/ 0/ 0 0/ 0/ 67 0/ 0/100 33/100/100 10/ 48/ 81
w/o Grasp Optim 0/ 0/ 67 33/100/100 0/ 0/ 33 0/ 0/100 0/ 0/100 0/ 0/ 67 0/ 0/100 5/ 14/ 81

w/o Path-Centric Transform 0/ 67/100 0/ 67/100 0/ 0/ 0 0/ 0/ 67 0/ 67/100 0/ 0/ 0 33/100/100 5/ 43/ 67

Ablation: To understand how much optimizing part sequences and grasps helps, we conduct abla-
tion studies on our method by removing those optimizations respectively. We observed that subop-
timal sequencing often caused instability due to inadequate support of critical neighboring parts and
more part drifts due to unnecessary re-grasps. Meanwhile, suboptimal grasp selection frequently
caused part slippage due to insufficient contact area or inadequate resistance to external torques.
Thus, our planner inherently accounts for control-level uncertainties, and results demonstrate that
selecting effective part sequences and grasps significantly enhances assembly reliability. For control,
we observed that our path-centric transformation is crucial for generalizing across varying assem-
bly directions. Policies trained without it perform significantly worse when multiple directions are
involved. For more studies on the effects of path-centric transformation and residual actions intro-
duced in Sec 4, and success increase w.r.t. the number of trials per step, please see App. E.

Failures: We observed a noticeable gap between simula-
tion and real-world performances. Thus, we present a de-
tailed analysis of common failure cases shown in the right
figure: a) Small parts slip between gripper pads during in-
sertion attempts; b) Cumulative error accrued during the
assembly of large assemblies increases the displacement
error of final part insertions; c) The holding gripper is
not modeled during RL training, causing unexpected part
obstructions in the real world; d) Unstabilized parts shift
previously assembled parts during insertion. We assume
a 3mm noise in simulation given that the base part is sta-
bly held. However, many sources of real-world error lead
to much more significant errors than simulated, which are
non-trivial challenges for future work. Due to these fail-
ures, all methods achieve near-zero multi-step success rates without intervention due to inherently
challenging steps causing consistent failures. However, with minimal interventions, our method
significantly outperforms others, reaching 81% success with one intervention and 95% with two.

6 Conclusion

We presented Fabrica, a dual-arm robotic system that innovates and integrates global hierarchi-
cal planning with local generalist policy learning for autonomous multi-part assembly. To support
reproducible and rigorous evaluation, we introduced a comprehensive benchmark suite covering di-
verse multi-part assemblies. Fabrica is the first to demonstrate robust and generalizable performance
across a wide range of real-world assembly tasks. We discuss limitations and future work in Sec 7.
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7 Limitations and Future Work

While Fabrica shows promising results for autonomous multipart assembly, there remain several
limitations and opportunities for future extension.

Assumptions: The assumptions we make in this problem formulation are the following:

(A1) Insertion-only assembly: We assume that the mating between two parts only involves an
insertion motion, without requiring skills like screwing or sliding.

(A2) No subassembly reorientation: The final assembled positions of all parts are assumed to
be given and fixed during the assembly process. This means that no further movement or
re-orientation is allowed once a part is assembled.

(A3) Monotonic assembly: Each part is only moved once, without considering regrasps, in-hand
manipulation, or handovers.

(A4) No force and torque constraints for the robots: We assume all parts are light compared to
the robot payload.

(A5) A finite grasp set for each part: ∀g ∈ σ, g ∈ G[o], |G[o]| = N , where G[o] can be computed
by any grasp generator.

The above assumptions leave areas such as handling heavier parts, managing grasp slippage, and
performing other operations such as screwing or sliding unaddressed. Incorporating these capabil-
ities would significantly improve the robustness and applicability of Fabrica in more complex and
diverse assembly tasks.

Dexterity: Moreover, the current setup enforces a fixed part pose once assembled. This is in contrast
with the more dexterous human assembly behavior, where one would constantly reorient the partial
assembly so that the parts are easily reachable. However, allowing reorientation would introduce
additional planning overhead and more uncertainty for control due to potential subassembly insta-
bility. Addressing it will enable a more dexterous robotic system that can handle large assemblies
that are beyond the reach of the current system, e.g., a large tabletop with parts on both sides.

Hardware capability: Compared to the existing multipart assembly dataset with thousands of ob-
jects [10], our current benchmark is limited in its size and diversity. This is because we want to
ensure that the benchmark tasks are achievable by commonly used parallel grippers, but these grip-
pers have a limited grasp width and thus cannot establish stable antipodal grasps for parts with large
and complex geometries. However, to broaden the assembly capability, we can envision either a
multi-finger hand or a multi-tool system in which the robots can switch specialized grippers accord-
ing to the part geometry, and our planning and control system could be adapted to this setting.

Perception: Integrating vision systems for alignment feedback could greatly improve the accuracy
and adaptability of the assembly process. By incorporating perception, the system could enable
direct bin-picking, allowing it to grasp parts from random, unknown initial poses instead of requiring
a specialized pickup fixture. However, bin-picking remains a well-known challenge in industry,
particularly in terms of robustness and generalizability across arbitrary part geometries and physical
properties. Addressing these challenges requires substantial research and development efforts, but
would significantly expand the practical applications of our approach.

Data collection: Collecting real-world assembly data is challenging due to the task’s long-horizon,
contact-rich nature and the high cost of acquiring or fabricating diverse assembly assets. Fabrica
addresses these barriers by enabling fully autonomous data collection in simulation and requiring
only minimal human intervention in the real world. In future work, we aim to leverage this capa-
bility to generate large-scale, diverse datasets of assembly trajectories. These datasets can facilitate
broader research in generalizable policy learning, sim-to-real transfer, and foundation models for
robotic manipulation. Moreover, because assembly is one of the most constrained and demanding
manipulation tasks, learning from assembly data has the potential to positively transfer to a wide
range of general-purpose manipulation skills.
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[15] L. Nägele, A. Hoffmann, A. Schierl, and W. Reif. Legobot: Automated planning for coordi-
nated multi-robot assembly of lego structures. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9088–9095. IEEE, 2020.

[16] Y. Huang, C. R. Garrett, I. Ting, S. Parascho, and C. T. Mueller. Robotic additive construction
of bar structures: Unified sequence and motion planning. Construction Robotics, 5:115–130,
2021.

[17] Y. Huang, P. Y. V. Leung, C. Garrett, F. Gramazio, M. Kohler, and C. Mueller. The new
analog: A protocol for linking design and construction intent with algorithmic planning for
robotic assembly of complex structures. In Proceedings of the 6th Annual ACM Symposium on
Computational Fabrication, pages 1–17, 2021.

[18] Z. Wang, F. Kennel-Maushart, Y. Huang, B. Thomaszewski, and S. Coros. A temporal coherent
topology optimization approach for assembly planning of bespoke frame structures. ACM
Transactions on Graphics (TOG), 42(4):1–13, 2023.

[19] C.-J. Liang, S.-C. Kang, and M.-H. Lee. Ras: a robotic assembly system for steel structure
erection and assembly. International Journal of Intelligent Robotics and Applications, 1:459–
476, 2017.

[20] K. Dörfler, T. Sandy, M. Giftthaler, F. Gramazio, M. Kohler, and J. Buchli. Mobile robotic
brickwork: automation of a discrete robotic fabrication process using an autonomous mobile
robot. Robotic Fabrication in Architecture, Art and Design 2016, pages 204–217, 2016.

[21] A. A. Apolinarska, M. Pacher, H. Li, N. Cote, R. Pastrana, F. Gramazio, and M. Kohler.
Robotic assembly of timber joints using reinforcement learning. Automation in Construction,
125:103569, 2021.

[22] A. Kramberger, A. Kunic, I. Iturrate, C. Sloth, R. Naboni, and C. Schlette. Robotic assembly
of timber structures in a human-robot collaboration setup. Frontiers in Robotics and AI, 8:
768038, 2022.

[23] G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel. Learning robotic assembly from
cad. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 3524–
3531. IEEE, 2018.

[24] Y. Fan, J. Luo, and M. Tomizuka. A learning framework for high precision industrial assembly.
In 2019 International Conference on Robotics and Automation (ICRA), pages 811–817. IEEE,
2019.

[25] Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak, Y. Guo, A. Mora-
vanszky, G. State, M. Lu, et al. Factory: Fast contact for robotic assembly. arXiv preprint
arXiv:2205.03532, 2022.

[26] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos, D. Fox, and Y. Narang.
Industreal: Transferring contact-rich assembly tasks from simulation to reality. arXiv preprint
arXiv:2305.17110, 2023.

[27] X. Zhang, C. Wang, L. Sun, Z. Wu, X. Zhu, and M. Tomizuka. Efficient sim-to-real transfer
of contact-rich manipulation skills with online admittance residual learning. In Conference on
Robot Learning, pages 1621–1639. PMLR, 2023.

[28] J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine.
Serl: A software suite for sample-efficient robotic reinforcement learning. arXiv preprint
arXiv:2401.16013, 2024.

11



[29] M. Noseworthy, B. Tang, B. Wen, A. Handa, N. Roy, D. Fox, F. Ramos, Y. Narang, and I. Aki-
nola. Forge: Force-guided exploration for robust contact-rich manipulation under uncertainty.
arXiv preprint arXiv:2408.04587, 2024.

[30] L. Ankile, A. Simeonov, I. Shenfeld, and P. Agrawal. Juicer: Data-efficient imitation learning
for robotic assembly. arXiv, 2024.

[31] L. Ankile, A. Simeonov, I. Shenfeld, M. Torne, and P. Agrawal. From imitation to refinement
– residual rl for precise assembly, 2024. URL https://arxiv.org/abs/2407.16677.

[32] H. Huang, D. Wang, A. Tangri, R. Walters, and R. Platt. Leveraging symmetries in pick and
place. The International Journal of Robotics Research, page 02783649231225775, 2024.

[33] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation. In
2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE,
2022.

[34] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.
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Appendix A Qualitative Results

Fig. 1 and Fig. 2 show qualitative results of our system assembling a variety of multi-part objects
using different robot arms, both in simulation and in the real world. Once the hardware configuration
is provided, our planner works seamlessly with a wide range of robot arms and end-effectors without
requiring additional tuning.

The assembly process begins with picking up parts from the fixture, then transferring them to the
assembly area for either holding or insertion. The system determines when to switch roles between
the two arms, for example by handing over a part or changing the holding grasp, in order to maintain
stability and accuracy. After each insertion, the robot returns to retrieve the next part, and this
process continues until the assembly is complete. Finally, both arms return to their initial positions.

All plans are generated automatically, including grasp selection, arm coordination, motion gener-
ation, and fixture design. The only manual input required is the initial setup of the workcell and
placement of the hardware.

For real-world execution, we demonstrate robust sim-to-real transfer across long-horizon assembly
tasks, with consistent step-by-step correspondence between simulation and physical execution. The
system maintains geometric and temporal alignment across all stages of the assembly, including
grasping, insertion, and part switching. This highlights the reliability of our simulation-informed
planning and policy execution.

Figure 1: Step-by-step rendered assembly executions on different assemblies with different robots.
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Figure 2: Step-by-step real-world assembly executions on different assemblies with Panda robots,
with side-by-side correspondences between simulation and real.

Appendix B Problem Formulation

As in Sec. 3, we formulate planning as optimizing assembly-hold sequences ϕ, grasps σ, and robot
motions π:

min
ϕ,σ,π

E
(
Φn

i=1f⃗(ϕ1:i, σi−1:i, πi)
)

s.t. Cprec(ϕ) ≤ 0, Ckin(ϕ, σ, π) = 0, Ccol(ϕ, σ, π) ≤ 0 (2)
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A more detailed breakdown of constraints Cprec(ϕ), Ckin(ϕ), Ccol(ϕ) is shown below.

min
ϕ,σ,π

F⃗ (ϕ, σ)

s.t. ∀i ∈ [1, n],

Cprec(ϕ1:i) ≤ 0 (3a)
Ckin(oa,i, ga,i, τ

g
a,i(0), p

0
oi) = 0 (3b)

Ckin(oa,i, ga,i, τ
f
a,i(1), p

G
oi) = 0 (3c)

Ckin(oh,i, gh,i, τ
f
h,i(1), p

G
oi) = 0 (3d)

Ccol(ϕ1:i, π[a, i], π[h, i]) ≤ 0 (3e)
where each motion τ : [0, 1] → Q is a time-parametrized joint trajectory in the robot’s configura-
tion space Q. Eq. (3a) are the precedence constraints that ensure the partially assembled parts are
connected and do not collapse under gravity. Eqs. (3b) to (3d) ensure the robot configuration, grasp,
and the grasped object pose are kinematically consistent when picking, assembling, and holding.
Eq. (3e) ensures that both robots’ trajectories do not collide with previously assembled parts and
other static obstacles.

The key planning stages in Sec. 3 are further summarized here.

• Sec. 3.1: Starting from a multi-part mesh model, we construct a precedence graph rep-
resenting a minimum constraint set for any feasible sequence, considering only collision
among parts.

• Sec. 3.2: To reduce online collision checking overhead during search, we pre-compute a
discretized, collision-free grasp set for assembling and holding for all part pairs. Each
feasible grasp is associated with a corresponding robot trajectory.

• Sec. 3.3: We leverage the precedence graph and precomputed grasp pairs to expand a state
tree that contains all feasible part-grasp sequences and then search for an optimal part-grasp
sequence that minimizes a grasp stability cost.

• Sec. 3.4: After the grasps are determined, we develop an automatic design algorithm to
generate a pickup fixture, so that the planned grasp can be achieved easily without the need
of a re-grasp.

• Sec. 3.5: With the assembly sequence fixed and all robot configurations determined for
kinematic switches, i.e., pick-up, assembly, and hold, we plan for all transit and transfer
motions.

Appendix C Algorithmic Details

We now present detailed mathematical formulations of each algorithm introduced in Sec. 3.

C.1 Part Precedence Planning

Alg. 1 and the following paragraphs provide the details of the part precedence planning algorithm.

Precedence Tier Generation Initially, an empty list of tiers Tprec is initialized. We use Or to
represent all the remaining assembled parts, which starts from all partsO. AlthoughOr is not empty,
the algorithm constructs a new tier tprec by evaluating each part oi ∈ Or to determine the feasibility
of disassembly. Using motion planning, a disassembly path qi is computed for oi. Specifically, we
apply Assemble-Them-All [10], a physics-based method for efficient disassembly motion planning
given the highly constrained search space, and determine success based on a given timeout. If oi
can be disassembled, the pair (oi, qi) is added to tprec. Once all feasible parts are processed, the
constructed tier tprec is added to Tprec, and all oi ∈ tprec is removed from Or. This process repeats
until all parts are assigned to tiers.
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Precedence Graph Generation The graph construction phase generates a directed graph Gprec
that encodes precedence constraints among parts. An empty set Oe is initialized to track parts in
earlier tiers (i.e., parts that are supposed to be disassembled earlier). For each tier tprec ∈ Tprec, the
algorithm processes every part oi ∈ tprec by checking its disassembly path τoi for collisions with
parts in earlier tiers Oe. A collision check function identifies the set of colliding parts Oc ⊆ Oe. For
each oc ∈ Oc, an edge (oi, oc) is added to Gprec, indicating that oi’s disassembly depends on oc’s
prior removal. After processing all parts in tprec, the disassembled parts Ot are added to Oe. The
algorithm proceeds until all parts in all precedence tiers are added to the precedence graph.

Algorithm 1 Part Precedence Planning

1: Input: All parts O with goal poses pGO
2: Output: Directed graph Gprec representing precedence constraints
3: Initialize an empty list of tiers: Tprec ← []
4: Initialize an empty directed graph: Gprec ← DiGraph()
5: Initialize all remaining parts Or ← O
6: while Or ̸= ∅ do ▷ Tier generation
7: Initialize an empty tier: tprec ← {}
8: for each part oi ∈ Or do
9: τoi ← DisassemblyPath(oi, Or)

10: if feasible τoi is found then
11: tprec ← tprec ∪ {(oi, τoi)}
12: Or ← Or \ {oi | (oi, τoi) ∈ tprec}
13: Tprec.Append(tprec)

14: Initialize an empty set of parts in earlier tiers: Oe ← ∅
15: for each tier tprec ∈ Tprec do ▷ Graph construction
16: Let Ot ← {oi | (oi, τoi) ∈ tprec} ▷ Parts in tier tprec
17: for each (oi, τoi) ∈ tprec do
18: Gprec.AddNode(oi, path = τoi)
19: Oc ← CheckPathCollision(oi, τoi , Oe) ▷ Oc: colliding parts in Oe

20: for each oc ∈ Oc do
21: Gprec.AddEdge(oi, oc)
22: Oe ← Oe ∪Ot ▷ Update parts in earlier tiers
23: return Gprec

C.2 Dual-Arm Grasp Filtering

This section provides a detailed description of the sub-steps involved in the grasp filtering algorithm.

Single-Pose Grasp Feasibility Check Alg. 2 evaluates whether a specific grasp configuration g is
feasible for a target part o in its current pose po. The algorithm first determines the set of preceding
parts Oprec from the precedence graph Gprec. For each gripper aperture (agrasp and arelease), collision
checks are performed involving the robot body, the gripper, the target part o, the preceding parts
Oprec, and the environment obstacles E. If any collision occurs between them, the grasp g is not
feasible. Additional collision checks are performed between the gripper and other non-preceding
parts Oall \ Oprec, and collision information is added to the grasp. Such collisions are not hard
constraints because the non-preceding parts may get assembled later than the target part depending
on the specific assembly sequence. In this case, the collision does not matter, but the information
has to be recorded to find collision-free assembly sequences in the later stage.

Assembling Grasp Feasibility Check Alg. 3 determines the feasibility of using a grasp g to dis-
assemble a target part o along its disassembly path τo, derived from Gprec. For each pose po,t along
τo, the grasp is transformed accordingly and its feasibility is validated using Alg. 2. The aggregated
collision and IK information across all poses is stored in g. The grasp is feasible if all poses along
τo are validated.
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Algorithm 2 Single-Pose Grasp Feasibility Check

1: Input: Grasp g, robot R, target part o with pose po, all parts o ∈ O with their corresponding
goal poses pGo , precedence graph Gprec

2: Output: Feasibility (True/False), updated grasp g with collision and IK information
3: Oprec ← Gprec.PrecedingParts(o)
4: E ← environment obstacles
5: qRg ← IK(R, g, o, po) ▷ IK for robot to grasp part o under pose po with grasp g
6: if feasible qRg is found then
7: Set robot R configuration to qRg
8: for each gripper aperture a ∈ {agrasp, arelease} do
9: Set gripper with aperture a

10: if CheckCollision(R, o,Oprec, E) then
11: return False, g
12: CheckCollision(R,O \Oprec)

13: Record collision and IK information to g
14: return True, g
15: else
16: return False, g

Algorithm 3 Assembling Grasp Feasibility Check

1: Input: Grasp g, robot R, target part o, all parts O with goal poses pGO, precedence graph Gprec
2: Output: Feasibility (True/False), updated grasp g with collision and IK information
3: τo ← Gprec.GetPath(o) ▷ Disassembly path of part o
4: for each part pose po,t ∈ τo do ▷ Disassembling o while grasping o
5: Transform grasp g according to pto to obtain gt
6: feas, gt ← CheckGraspFeas(gt, o, po,t, ...) ▷ Alg. 2
7: if not feas then
8: return False, g
9: Gather collision and IK information from gt to g

10: return True, g

Holding Grasp Feasibility Check Alg. 4 evaluates whether a grasp g can securely hold a part o
while allowing other parts oi to be disassembled. The feasibility of g is first validated using Alg. 2.

Algorithm 4 Holding Grasp Feasibility Check

1: Input: Grasp g, robot R, target part o, all parts O with goal poses pGO, precedence graph Gprec
2: Output: Feasibility (True/False), updated grasp g with collision and IK information
3: feas, g ← CheckGraspFeas(g, o, pGo , ...) ▷ Alg. 2
4: if not feas then
5: return False, g
6: for each part oi ∈ Oall \ {o} do
7: qoi ← Gprec.GetPath(oi) ▷ Disassembly path of oi
8: for each part pose poi,t ∈ qoi do ▷ Disassembling oi while grasping o
9: CheckCollision(R, oi) and gather collision information to g

10: return True, g

Grasp Pair Filtering Putting the assembling and holding feasibility checks together, Alg. 5 gen-
erates and filters the dual-arm grasp pairs. For each part oi, a set of candidate grasp poses {gk}

Ng

k=1

is generated. Each grasp is evaluated for assembling and holding feasibility using Algs. 3 and 4,
respectively, and feasible grasps are stored in Ga[oi] and Gh[oi]. Finally, iterating through all
assembly-hold part pairs, the set of feasible assembly-hold grasp pairs Ga×h[oa, oh] only contains
those that do not lead to collisions between the two robots.
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Algorithm 5 Dual-Arm Grasp Pair Filtering

1: Input: All parts O with goal poses pGO, robots Ra, Rh, precedence graph Gprec

2: Output: Assembling grasps Ga, holding grasps Gh, assembling-holding grasp pairs Ga×h

3: Initialize empty dictionaries Ga,Gh,Ga×h ← {:}, {:}, {:}
4: for each part oi in O do ▷ Feasible grasp generation
5: Ga[oi],Gh[oi]← {}, {}
6: Generate Ng grasp poses {gk}

Ng

k=1 on part oi
7: for each grasp pose gk do
8: feasa, ga ← CheckAssemGraspFeas(gk, Ra, oi, ...)
9: if feasa then

10: Ga[oi]← Ga[oi] ∪ {ga}
11: feash, gh ← CheckHoldGraspFeas(gk, Rh, oi, ...)
12: if feash then
13: Gh[oi]← Gh[oi] ∪ {gh}
14: for each part oa ∈ O do ▷ Feasible grasp pair filtering
15: for each part oh ∈ O do
16: if oa ∈ Gprec.PrecedingParts(oh) then
17: continue

Ga×h[(oa, oh)]← {}
18: for each grasp ga ∈ Ga[oa] do
19: for each grasp gh ∈ Gh[oh] do
20: Set robot Ra configuration to qRa

ga

21: Set robot Rh configuration to qRh
gh

22: if not CheckCollision(Ra, Rh) then
23: Ga×h[(oa, oh)]← Ga×h[(oa, oh)] ∪ {(ga, gh)}
24: return Ga,Gh,Ga×h

C.3 Dual-arm Sequence-Grasp Optimization

Alg. 6 provides the pseudocode for the sequence-grasp optimization algorithm, followed by the
formulas used to evaluate the transition edge cost.

Objective evaluation

• Maximizing the number of supportive parts held (f1): Part A is supportive to part B if A is
in the preceding parts of B in Gprec.

• Minimizing the number of holding grasp transitions (f2): Holding grasp transitions can be
counted simply by comparing whether the holding grasps in consecutive steps are the same.

• Minimizing approximated torque for assembling grasps (f3):

∥τpart + τgrasp∥
Ngrasp

(4)

Where:

τpart =

Npart∑
i=1

(ri − cpart)×
dcontact

Npart

τgrasp =

Ngrasp∑
j=1

(rj − cpart)×
−dcontact

Ngrasp

Where:

– ri, rj are the position vectors of contact points on the part and grasp, respectively.
– cpart is the center of mass of the part.
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Algorithm 6 Dual-Arm Assembly Sequence Planning

1: Input: All parts O, precedence graph Gprec, assembling grasps Ga, assembling-holding grasp
pairs Ga×h

2: Output: Optimal assembly part-grasp sequence S∗

3: Initialize an empty tree TG ← DiGraph()
4: S← [] ▷ Initialize an empty search stack.
5: for each o ∈ O do
6: if Gprec.SucceedingParts(o) = ∅ then
7: for each g ∈ Ga[o] do
8: TG.AddNode((a,O \ {o}, o, g)) ▷ Root nodes
9: push(S, (a,O \ {o}, o, g))

10: while S not empty do
11: (ti, Oi, oi, gi)← pop(S)
12: ti+1 ← h if ti = a else ti+1 ← a
13: for each oi+1 ∈ Oi do
14: Oi+1 ← Oi \ {oi} if ti+1 = a else Oi+1 ← Oi

15: if (Oi ∪ {oi}) ∩Gprec.PrecedingParts(oi+1) ̸= ∅ then
16: continue ▷ Precedence check
17: for each gi+1 ∈ Gti+1 [oi+1] do
18: Oc ← Gti+1 [oi+1][gi+1].CollidingSet ▷ Precomputed collision set
19: if Oc ∩Oi+1 ̸= ∅ then
20: continue ▷ State collison check
21: if (gi+1, gi) ∈ Gti+1×ti [(oi+1, oi)] then
22: TG.AddEdge(((ti, Oi, oi, gi), (ti+1, Oi+1, oi+1, gi+1))) ▷ Grasp pair validity

check
23: push(S, (ti+1, Oi+1, oi+1, gi+1))
24: for each ei ∈ TG.Edges() do ▷ Objective evaluation
25: ((ti, Oi, oi, gi), (tj , Oj , oj , gj))← ei
26: if ti = a, tj = h then ▷ Assembling-holding step
27: ei.f⃗ ← f⃗(Oi, oi, gi, oj , gj)
28: else ▷ Holding transition step
29: ei.f⃗ ← 0⃗

30: S∗ ← [o∗a,1, g
∗
a,1, o

∗
h,2, g

∗
h,2, ..., o

∗
a,n, g

∗
a,n]← DP(TG,Φ) ▷ Dynamic programming

31: return S∗

– dcontact is the contact direction vector.
– Ngrasp and Npart are the number of contact points for the grasp and part, respectively.

• Maximizing part contact area for holding grasps, weighted by the orientation difference
from the paired assembling grasps (f4):

∆θrotation ×Nhold (5)
Where:

∆θrotation =
∥∥R−1

hold ·Rassemble
∥∥

Where:

– ∆θrotation represents the angular difference between the holding and assembling grasps.
– Rhold and Rassemble are the rotation matrices derived from the quaternions of the hold-

ing and assembling grasps, respectively.
– Nhold is the number of contact points in the holding grasp.

C.4 Grasp-Oriented Pickup Fixture Generation

The fixture generation process begins with the computation of an appropriate pickup pose for each
part. Our goal is to enforce a top-down pickup grasp without requiring re-grasping during the tran-
sition from pickup to assembly. Therefore, we can derive the pickup orientation of each part given
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the final assembled pose of them and the optimal grasp planned at the assembled pose, since we
maintain the same relative transformation between the part and the gripper from pickup to assembly.

Next, we determine the pickup position for all parts. Since all pickup motions follow a top-down
path, parts are arranged to prevent any overlap along the Z-axis, the vertical direction in the world
coordinate frame. This constraint ensures unobstructed pickup paths and simplifies the design of the
supporting fixture. Along the Z-axis, parts are positioned at the lowest possible height while ensuring
that there are no collisions with the ground based on their orientation. In addition, a minimum base
height is maintained for the fixture board to provide structural stability and support.

Determining the XY positions of the parts is more challenging, as the layout directly impacts the
fixture area, which should ideally be minimized to reduce material costs for fixture fabrication and
maximize the available workspace within the workcell. Additionally, incorrect part layout on the
XY plane can lead to potential collisions between the gripper and the remaining parts during pickup.
Since the orientation of each object is locked, we can represent each part using a rectangular bound-
ing box of its 2D-projected contour. Then, the problem becomes a 2D bin-packing problem, a classic
problem with both heuristic and exact algorithms exist [51]. We use a simple algorithm that iterates
through the following phases:

1. We use the Maximal Rectangles algorithm [52] to pack the bounding boxes into an initial
bounding area;

2. We check the collisions between the gripper and the precedent parts of the grasped part;

3. If any collisions are detected, the colliding parts are buffered with additional spacing and
the bin-packing process is performed again;

4. We increase the bin area once it is not enough to find a packing solution given the increased
rectangle sizes.

Once an optimal packing configuration is determined, the fixture is generated by creating mold cav-
ities that accommodate the part shapes. A minimal mold depth is calculated to ensure gravitational
stability of part placement, where the Z-axis projection of each part’s center of mass lies within the
convex hull of the contact points between the fixture and the part. The fixture cavity is generated
by projecting the part’s 3D geometry onto a 2D plane perpendicular to the pickup direction and ex-
truding it to the calculated depth. Additional cavity is generated by creating free space for the grasp
motion for every part based on the gripper geometry and the grasping motion. Finally, the generated
fixture is enhanced with countersunk pads to assist in accurate positioning. By automating the entire
fixture generation process, our approach provides a flexible and scalable solution for diverse part
geometries and assembly sequences.

Appendix D Experimental Setup

D.1 Hardware Setup

We conduct real-world experiments using a dual-arm setup composed of two Franka Emika Panda
robots, each equipped with parallel-jaw grippers. The arms are mounted on one side of a shared
table, facing the user, and their relative positions are calibrated via a common reference frame. The
workspace is divided into a pickup area and an assembly area, both fixed and pre-defined based on
the available workspace area. The system uses internal encoders for joint sensing, without external
force-torque sensors or visual feedback.

D.2 Simulation Environment

We use RedMax, the same simulator used in Tian et al. [11], for simulation-based planning, and Isaac
Gym for reinforcement learning. Grasp feasibility is determined by sampling 100 candidate grasps
per part using an antipodal grasp planner, followed by inverse kinematics validation and collision
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checking in RedMax. Precedence tier planning uses a physics-based disassembly planner [10] with
orthogonal force directions for motion planning.

D.3 Training Configuration

Assembly policies are trained using PPO from the RL Games framework with key hyperparameters
for RL presented in Table 1, which we use for all reported RL experiments. Our generalist policies
are trained for a maximum of 5 × 107 steps (or equivalently 1500 iterations) with a parallel rollout
setup using 1024 environments, which takes less than 2 hours on a single NVIDIA RTX A6000
GPU.

Table 1: Key RL Hyperparameters.
Parameter Value
Algorithm Name PPO
MLP Units [256, 128, 64]
MLP Activation elu
Learning Rate 1e-4
Gamma 0.99
Tau 0.95
Entropy Coefficient 0.003
Gradient Norm 1.0
Horizon Length 32
Minibatch Size 512
Mini Epochs 8
Critic Coefficient 2
KL Threshold 0.016

D.4 Real-World Deployment

Robot control alternates between executing planned transit motions in joint space and reactive policy
execution for insertion steps. For policy execution, a task-space impedance controller is used with
gains Kp = [800 N/m, 800 N/m, 400 N/m] and Kd = 2

√
Kp, transformed into the path-centric

frame to ensure consistent compliance. Control runs at 30 Hz. During deployment, we use the leaky
Policy-Level Action Integrator (leaky PLAI) scheme for improved stability with an action scale of
0.001 and an error threshold of 0.02. We use the same set of control parameters across all benchmark
assemblies. Interventions are requested after three consecutive failures to insert, detected via joint
deviation thresholds and motion stagnation.

Appendix E Ablation Studies

E.1 Impact of Coordinate and Action Design

We conducted ablation studies to evaluate the impact of coordinate frame selection (world vs. path-
centric) and action representation (nominal vs. residual) on the assembly specialist (AS) policy’s
performance in simulation. Table 2 presents the average % of successful steps without intervention
across 1024 randomized simulation evaluations for each assembly task under four configurations.

Overall, the combination of path-centric coordinates and residual actions proves particularly effec-
tive for assemblies involving diverse insertion directions, such as the Plumbers Block and Gamepad.
Individually, each technique provides a structured prior that simplifies learning: path-centric coor-
dinates standardize insertion directions by reorienting each assembly motion into a canonical frame,
while residual actions leverages the planned trajectory and allow for fine-grained corrective adjust-
ments on top of it. When applied together, they complement each other, enabling both directional
consistency and precise control, leading to significantly higher success rates across most assemblies
in our benchmark.
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Table 2: Ablation studies on the impact of coordinate and action design choices on the assembly
specialist (AS) policy’s performance across 1024 randomized simulation evaluations.

Coordinate Action % of Successful Steps without Intervention (Simulation)
Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool

World Nominal 99.71% 49.32% 73.24% 76.95% 94.92% 96.97% 70.41%
World Residual 99.71% 95.02% 71.09% 73.44% 95.02% 97.75% 74.80%

Path-Centric Nominal 99.71% 93.95% 60.35% 85.35% 92.58% 97.17% 70.41%
Path-Centric Residual 99.12% 97.46% 70.12% 88.87% 95.02% 96.58% 76.66%

Table 3: Scaling effect of number of policy trials across 3 complete end-to-end multi-step real-world
evaluations.

Method # Trials % of Successful Steps without Intervention (Real World)
Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool

Open-Loop Tracking 1 42% 25% 20% 20% 17% 14% 21%

Assembly Specialist
Policy (AS)

1 58% 58% 60% 40% 67% 43% 75%
2 67% 58% 80% 60% 67% 79% 75%
3 75% 67% 87% 73% 83% 79% 88%

E.2 Effect of Number of Trials

In real-world experiments, we evaluate the assembly specialist policy with varying numbers of al-
lowed trials (1, 2, or 3) per step, due to the stochastic nature of the policy. Table 3 summarizes
the average % of successful steps without intervention across three end-to-end multi-step assembly
runs. Results indicate that permitting additional trials substantially boosts success rates. The pol-
icy consistently improves as trial count increases, suggesting that the policy benefits from repeated
attempts to refine alignment and correct minor positional errors.

The results further demonstrate open-loop baseline’s inability to recover from failures and adapt
to variations in the real world environment, even though the planned path is accurate and the real
robot is well calibrated. In contrast, the RL policy consistently demonstrates improved progress,
with notable gains observed as the number of trials increases. The results show a clear trend: with
1 trial per step, the policy can achieve moderate progress but still faces challenges in most of the
assemblies. Introducing retries significantly enhance progress, enabling the system to correct minor
errors and overcome small disturbances.

Appendix F Integrating Vision Feedback: VLM for Insertion Alignment

To further address insertion misalignments observed during the initial insertion attempt, we integrate
a vision-language model (VLM) to provide corrective alignment feedback in the form of discrete
actions. The model, a state-of-the-art version of Gemini (gemini-2.5-pro-preview-03-25), is
leveraged to assess spatial alignment between the grasped part and the insertion hole based on visual
input.

While training visuomotor policies directly from visual input is a common approach for alignment
tasks, it requires extensive data collection, task-specific training, and continuous fine-tuning to gen-
eralize across diverse parts and insertion scenarios. In contrast, leveraging a VLM for alignment
feedback offers significant advantages. VLMs are pre-trained on diverse visual contexts, enabling
them to generalize across varied geometries and occlusions without extensive task-specific data col-
lection. Additionally, they provide interpretable, discrete corrective actions (e.g., “move right”)
accompanied by concise explanations, enhancing both robustness and transparency in alignment
tasks, especially under low-cost, fixed-focus camera setups.
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F.1 Physical Setup

Figure 3: Physical setup for integerat-
ing vision feedback. Left: Camera de-
tails. Right: The mounted configuration
on the robot wrist.

The vision integration requires only RGB input without
high imaging quality, allowing for the use of low-cost
cameras. We utilize an Arducam B0205 USB camera
($34.99), shown in Fig. 3, mounted on the robot wrist at
an angle optimized to capture the insertion area. The cam-
era is equipped with an IR-CUT filter and infrared LEDs
for low-light conditions, but lacks focus adjustment, re-
sulting in reduced image clarity when the insertion part is
out of focus.

F.2 Methodology

If the insertion policy fails on the first attempt, the en-
tire video of the failed attempt is recorded and segmented into ten key frames sampled uniformly
across the video. These frames are passed to the VLM, which is prompted to recommend the best
corrective action (up, down, left, or right) to align the part with the hole. The VLM is addition-
ally prompted to provide a concise, step-by-step reasoning for the recommended action to mitigate
potential hallucinations. The exact prompt we use is detailed below.

’’’
You are assisting a robot in aligning a grasped part for insertion

using visual feedback from a camera mounted on the robot ’s wrist.

Task:
- The part is grasped by the robot and can move in four directions: ["

up", "down", "left", "right"], each by 2 mm in the camera frame.
- The goal is to move the part to align it precisely with the hole for

insertion.

Instructions:
- Carefully observe the video frames. Focus only on the position of

the part relative to the hole.
- Determine the single best action to move the part to align with the

hole.
- Focus only on spatial cues: Is the part too far left , right , above ,

or below the hole?

Response format:
{
"action ": "right",
"reason ": "The part is too far left relative to the hole and needs to

move right to align ."
}

Only output the single best action based on spatial cues. If the part
is already aligned , output "hold".

What is the best action to move the part to align with the hole?
’’’

After receiving the VLM feedback, the robot executes the recommended action by adjusting the
gripper in the task frame by 2 mm. The insertion policy is then restarted from this new position.
If the insertion still fails, the entire process is repeated with the newly recorded video sequence,
allowing for multiple VLM interventions as necessary.
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F.3 Results and Analysis

Before

After

Before

After

{
“action”: “right”,
“reason”: “The part is too 

far left relative to the hole 
and needs to move right to 
align.”
}

{
    “action”: “up”,
    “reason”: “The part is too 
far down relative to the 
hole and needs to move up 
to align.”
}

Figure 4: Example outputs from VLM during corrective alignment. The VLM identifies spatial
misalignments in the camera frame and recommends discrete corrective actions (e.g., “right” and
“up”) with concise reasoning.

The VLM integration demonstrated notable improvements in alignment accuracy, particularly in
cases where the insertion policy initially failed due to misalignment. Figure 4 illustrates two repre-
sentative examples where the VLM provided corrective actions that successfully guided the arm to
the intended alignment.

In the first example, the VLM identified a leftward misalignment and recommended the action
“right”, allowing the part to be re-centered relative to the insertion hole. The corrective action was
executed in the tool frame, resulting in a more precise alignment before the subsequent insertion
attempt. Similarly, in the second example, the VLM detected a downward offset and suggested the
action “up”, effectively repositioning the part closer to the target insertion point. In both cases, a sin-
gle VLM intervention was sufficient to resolve the misalignment, highlighting the model’s capacity
to reason spatially based on minimal visual input.

Despite the low-cost camera setup and lack of focus adjustment capabilities, the VLM effectively
discerned alignment cues based on coarse visual features. This is particularly noteworthy given
that occlusions and visual clutter are prevalent in multi-part assemblies, where small positional
errors can accumulate over successive steps. The VLM’s concise, reason-based output structure
further mitigates hallucination risks by constraining the response format to a single action-reason
pair, reducing ambiguity and enhancing interpretability.

F.4 Limitations and Future Work

While the VLM integration demonstrated significant alignment improvements, occlusions remained
a primary failure mode. Occlusions are common in complex assemblies, necessitating either a flex-
ible/active camera setup or multiple cameras strategically positioned to cover the scene comprehen-
sively. Furthermore, hallucination remains a concern, particularly in cluttered scenes where visual
cues are ambiguous. Future work will explore improving prompt engineering and camera configu-
rations, potentially leveraging multi-view setups and active camera movements akin to human head
and body movements.
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